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Abstract

j,4 .

-- Thts is the first in a series of three papers in which ve discuss a method

for "post-processing'a finite element solution to obtain high accuracy approxi-

mations for displacements, stresses, stress intensity factors etc. Rather than

take the values of these quantities 'directly" from the finite element solution,

iff evaluate certain weighted averages of the solution over the entire region.

These yield approximations that are of the same order of accuracy as the strain

energy. -W obtain error estimates, and also present some numerical examples

to illustrate the prac cal effectivity of the technique. In the third paper

of this series yW address the matters of adaptive mesh selection and

a 'posteriori error estimation.
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§1 Introduction

51.1 The role of post-processing.

In many instances the primary aim of a finite element analysis is to

obtain the values of a few important quantities with a rather high accuracy.

For instance, in structural mechanics, the values of displacements, stresses

or stress intensity factors at a small number of critical sites in the

structure are important design criteria. Decisions on whether the structure

meets design specifications, or whether it is safe are made on the basis of

these few quantities. The bulk of the remaining numerical output of the

finite element analysis is generally not scrutinized so closely, but rather

is looked at from a more qualitative viewpoint. It may, for instance, be

used to identify the critical points in the construction, to obtain a

graphical display of the structures deformation or to examine the solution's

plausibility with a view to replacing, if need be, the particular mathematical

model or constitutive law employed.

These considerations suggest that some thought should be paid to how the

solution should be "post-processed" to obtain values for these quantities.

Since only a few quantities ever need to be calculated, we should be willing,

if necessarv to expend a modest amount of computational effort on any post-

processing calculation. A straightforward approach to post-processing is to

take the displacements or stresses directly as they are output from the finite

element computations. "Curve fitting" methods for stress intensity factor

calculations also fall into this "direct" category. There are, however, more

sophisticated techniques which are currently implemented in many commercial

codes. We mention, for instance, the calculation of stresses at the Gaussian

points of certain element types, and the use of the "stiffness derivative"

method of Parks [ 1] or the "J-integral" method of Rice (2 ] for the deter-



mination of stress intensity factors.

We shall show in this and two succeeding papers that there are post-

processing procedures available which give an accuracy for many physically

important quantities of the same order as the error in the energy of the

finite element approximation. For example, in solving the plate problem

(that is, the two dimensional biharmonic equation) with conforming elements

of degree p>5 it is possible (with an appropriate finite element mesh)

to determine at any point the displacement, rotation, moment and shear force,

all with an order of accuracy O(N- (P-l)) , where N is the number of degrees-

of-freedom of the finite element model. Compare this with the "direct"

approach which gives displacements to O(N -(P+l)/2 rotation to 0(N (p /2 )

and moments to O(N - (p -l)/ 2 ) , The fact that the "direct" approach results in

higher accuracy for displacements than moments is widely known. We remark

also that the post processing approaches that we shall outline can be well

understood from within the standard "energy" theory of finite elements. This

contrasts with the complex mathematical theory which is needed to analyze the

direct approach to the determination of pointwise quantities.

§1.2 A general form for post-processing calculations

Let us denote by t the quantity (e.g. stress at a point) which we wish

to determine. We shall write O(w) for 0 to indicate that 0 relates to

a problem whose exact solution is w . Now, let us suppose that we know a

function r so that

(1.1) M - (w) wC d2 + R

where Q is the region on which our problem is posed, and R is an integral

which may be computed using only the problem's input data (applied tractions

2
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and forces etc.). As a simple illustration of what (1.1) may describe,

consider the case where 0 Is the value of w at some given point. Were

the influence function (Green's function) known for this point, then we could

take i=O and 0 would be expressible in terms of the input data alone. So

(1.1) would take the form 4=R . Of course, the influence function is not

in general available. At the other extreme, if we take to be the Dirac

delta function at the point under consideration then we could set R=O and

= Jw dQ . This is simply a formal way of saying, evaluate w directly

at tae point. However, as we shall see later, there are many choices for

between these two extremes. Let us also mention that (1.1) may also be

written in other equivalent forms (e.g. after an integration by parts we are

able to obtain an integral in terms of the derivatives of w instead of w

itself). The well known J-integral of Rice [2 ) could be thought of as arising

from such a modified version of (1.1). The path independence property of the

J-integral then corresponds to different choices for •

Having (1.1) suggests an obvious method of approximation for 0 . If w

is a finite element approximation to w , then we could try to approximate

= ¢(w) by

(1.2) d +R
fi
S2

The difference between 0 and is given by

(1.3) e - = fW~) dl?

and we see clearly that the choice of affects the magnitude of this difference.

If is the Dirac delta function, then t is the point value of w and e

is the pointwise difference between w and w

3IA
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If however 4 is not concentrated at one point, then e becomes some weighted

average of w-w . It is well known that the finite element method appears

more reliable when its accuracy is measured in an average, rather than a point-

wise sense. Spurious oscillation which may cause serious loss of accuracy in

pointwise values of the approximate solution (especially of its higher

derivatives) are filtered out by averaging. This is especially the case with

the p-version of the finite element method. So, even at this early stage, we

see that choices of 4's which have large support are likely to give superior

approximations t' A good choice for is an important feature of any

successful implementation of (.1.2). Numerical experience however has shown

that, provided C meets a few simple criteria, 4 is quite insensitive to the

choice of C

Another implementation issue that we shall address is the optimal choice

of mesh (and consequently of w) for use in (1.2) This is especially significant

for adaptive finite element codes, where some adaptive criteria must be set.

Obviously, if a good approximation to (P is our ultimate goal, this adaptiv,-

criteria should be directed towards producing a w that performs well in (1.2).

From a computational point of view, evaluation of needs at most 0(N)

operations, while the solution of the finite element problem itself usually needs

about 0(N2 ) operations in two dimensions and 0(N7 /3) in three dimensions.

Since only a few evaluations are ever needed, the computational effort entailed

is relatively insignificant.

*§1.3 Outline of the paper

This is the first of a series of three papers which shall deal with post-

processing in the finite element method. In this paper we detail some

particular applications of the general theory outlined in §1.2. In §2



we treat the example of a one-dimensional, elastic supported beam. lere we

shall be interested in post-processed values for the displacement, rotation,

moment and shear force at certain points, along with the average displacement

over a subsection of the beam. §3 deals with the simple two dimensional problem

of a membrane on an elastic support. For this problem we shall be interested in

the displacements and stresses at certain points. Finally in §4 we discuss a

numerical example related to the problem treated in §3.

The second paper of the series will be devoted to applications in linear

facture mechanics. In particular, we shall be concerned with the computation

of stress intensity factors (including both k and k2 for mixed mode

fracture). In the third paper we address the issues of a'posteriori error

estimates for ¢ and adaptive mesh selection for w

5i
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§ 2. A Onc-d imens ional Exam~ple

§2.1 Formulation of the example

By way of a one-dimensional application of the techniques outlined in

§1.2 we shall consider the problem of a clamped beam (of unit length) on an

elastic support. The governing differential equation ip

(2.1) (aw") " - (bw')' + cw = f on (0,1)

with the boundary conditions

(2.2) w(O) = w'(O) = 0 and w(l) = w'(l) = 0

We s hall assume that a, b, c and f are smooth functions which satisfy

(2.3) a(t) > a > 0 (0 < t < 1)

b(t), c(t) > 0

The coefficient a is the rigidity of the beam while b and c relate to

the elastic properties of the support. For this problem we shall be interested

in the evaluation of the following five important mechanical quantities:

(I) The displacement of the beam 4I ¢(w) = w at 0 < t < 1

(II) The rotation of the beam ;2 = 42 (w) = w' at 0 < t < 1

(III) The bending moment 3= 3 (w) = aw" at 0 < t < 1

(IV) The shear force 4= (w) = (aw")' - bw' at 0 < t < 1

(V) The average displacement of the subsection t < t < t2  of the beam,

5 = (t 2 -tl) 1 ft 2 w dt

tl
1~

6



§2.2 Expressions for 4, i , ..,4)

i

For the moment, let * be any function defined on (0,I) which satlsfies

the boundary conditions (2.2). Suppose also that * is sufficiently smooth

to allow any operations that we carry out. Now, multiply (2.1) by * and

integrate by parts four times over the entire interval,

f * dt = ((aw")"O - (bw')'o + cw¢) dt

0 0

t-O
= [(aw")' - aw"V + aw'O" -w(a")']

t+O

t-o t 1

-[bw'o - bw ']_ + (f+ L[flw dt
t+O f I

0 -
t

= [w(-(a ")' + bO') + w' (a ") + aw"(-¢') +

(2.4) ((aw")' - bw')]_ + (f+ f) L[P]w dt
t+O t

where

L[41 = (at")" - (be')' + c .

Let us now be more specific about the behavior of * near t . Depending

upon which derivatives of * are continuous at t , (2.4) will form the basis

of our expressions for 41 (i=l, ..,4)

i

Case (I): Suppose that

tO = 0 (i=0,,2) while
tF+O

(2.5a)
t-O

(3 ] = _a( -,

t--7



then (2.4) gives

M(W M f) + L[fw dt + f dt

0 t 0

1

This is exactly in the form (1.1) with R = J f dt and C = -L[€ ].

0

Notice that L[ ] will in general be discontinuous at t . We shall see

later that from a numerical point of view it is important that be smooth

on (0,1). So let us append to (2.5a) the condition

(2.5b) [Le] ( j I )  = 0 j=O,...,n
t +O

where n is some integer, which, for the moment, will remain arbitrary.

If we select for the influence function (Green's function), then

(2.5a) and (2.5b) are satisfied. Indeed, L[ ] = 0 on (0,t) and (t,l),

and we have (W) = ff dt. Of course, in Xneral, we cannot find the

influence function. Nevertheless, functions which satisfy (2.5a) and

(2.5b) are readily constructed, as the following example shows:

Example 1: We shall construct a function 0 which fulfills all the necessary

conditions, with n=1 in (2.5b). The construction is done in a number of

steps. First, define

0 0 < t <1t
0 M ~i

a(t)t < t < 1

and then set

tf

M f f 0 (s)ds dx dy

000

So *1(t) satisfies (2.5a). To meet the requirement (2.5b) with n=l we

!8



do f i ne

4 -5
I + L (t-t) + (t-t) 0 t < t

2 (t) t t < I

where the coefficients a and 6 are to be chosen so that (2.5b) holds. It

is easy to see that this needs

- ij I and
4!a(t) I t+O

= 5-a (L1 1 i t( + 3 a'(t)4!t)

(This step can be extended in an obvious fashion to handle n > I.)

We now have a function that satisfies (2.5), however it may not yet

satisfy the boundary conditions (2.2). There are many ways this can be

remedied. Two possibilities are:

(i) Let X be a smooth function which vanishes, along with its first

derivative, at t=O and t=1 , but has a value of 1 in an interval about

t . Then = meets all the requirements. We shall refer to X as a

cut off function.

I
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(ii) Let 3 be a smiooth funct ion such that 0) (0) M € '(0) and
3 2

42 (1) O) Then we may set W 2 . , shall refer to 43 as a

blnding function. Various mixtures of these two techniques are possible;

tur example, using a cut *off function to impose the boundary condition at

one end, and a blending function approach to handle the other endpoint.]

The above example typifies a general method of construction that we shall

employ, either explicitly or implicitly, throughout this series of papers:

Firstly, a relatively simple function is constructed that behaves in some

prescribed "singular" manner near a given point. This function must then be

modified to ensure that it satisfies a set of boundary conditions on the

entire boundary of the region of interest. Either cut off function, blending

function or a combination of these techniques may be used to achieve this. Let

us note at this point, that blending function techniques will usually lead

to a smoother modified function than will the use of a cutoff function. For

this reason, in a numerical setting, the blending function approach is to be

preferred.

Case II: Suppose that

t-0
[ €(i) ]_ = 0 (i=0,l)

t+O

(2.6a) j I" = a(t )-l and

-0

t-0
[(a4")' ] 1

t+0

then (2.4) gives

t 1 '

02w w'(t) w-(f + L(O) w cit + Jf * ct
0 t 0

10



As for Case 1, it will turn out to be important to add the condition

(2.6b) jLII41 0)1 J = 0 j=0,...,

Example 2: We shall construct a function that meets our requirements. We

proceed much as in Example 1. First we define as in that example, but

now set

t X

p1(tM = -f f 00(s) ds dx.
0 0

To satisfy (2.6b) (with n=1, say) and the third part of (2.6a) we may define

YO {41 M + a(t-t) + (t-t) + y(t-t) _

where a~ and y are to be chosen so that (2.6b) and the last part of (2.6a)

hold. (That this may always be done follows since a(t)#0.) We then proceed

to impose the boundary conditions (2.2) by the same methods described in

Example l1ii]

Cases IIl and IV: If t is internal to the interval then selecting

t -0
[ I- =0

t+O

t-0

t+0

t-0
(2.7) f* =0

ti40

t -0
[-(aO")' + bo'] 0 , and

t-0
Q0 J ] - 0 J.0,...,n

t+o



t 1

~3(w) =aw"(t) f + b ~ f LJOlw dt + f f dt

0 t 0

with smooth L[01 While choosing 0to satisfy

t-0

t-0
=0

T+O

(2.8)t0

t-0
-(ao")' + bo I- = 0 and

U)t-0
I = 0 cJ=o,.. .,n)
t+o

leads to the expression

t 1

1)4(w) =((aw")' bw')(t) =-(+ )L[O]w dt + f4 dt

for 04 (w)

To treat these two cases when t is one of the endpoints we need a

slightly different argument. For definiteness, suppose that T is the

right hand endpoint t=1 . We now let * be a smooth function on (0.1)

which satisfies the boundary condition 0(0) - '(0) 0 .Analogous to

(2.4) we now have

Jfo dt -Jf((aw")' (bw') '0 + c w)d

0 0

12



(2.9) = ((aw")' * - aw" 0')1t=1 + L[OIwdt

0

If we further set

(2.10) () = 0 and *'(I) = -1

we obtain after rearranging (2.9)

13(w) = aw"(1) = - L[j] wdt + fo dt
0 0

while, using in place of (2.10)

(2.11) 0(l) = 1 and 0'(l) = 0

leads to the expression

4(w) = (aw")'(1) = - LU'1 wdt + ff dt

0 0

Functions # satisfying (2.7), (2.8), (2.10) or (2.11) and the appropriate

boundary conditions are readily constructed using techniques similar to those

described in Examples 1 and 2.

§2.3. An expression for (5"

The definition of 45 in §2.1 is already in the form (1.1), for we may

certainly write

(2.12) 5 45(w )  wdt
0

where °  (t2 t)-i tI < t < t2

otherwise

13



However, from our point of view, this is an unsuitable expression for '5 since

is not smooth. To overcome this failing we may proceed as follows: Define

a(s3) r.(S)ds ds ds ds

00 0 0

Let p2 be a smooth blending function that satisfies the boundary conditions

2~
2i(0) M (0) and i(1) = i)(1) (i=0,l)

and set -= l- *2 * Multiply (2.1) by o and integrate by parts four

times over the entire interval,

f=f J(aw'F)") - (bw')'4, + co)w

0 0

= f LIflw dt

1
= fJ(LjI 1)w - L[4,2 ]w)dt

0

= f( w - (bol')W + C41w - L[, 2 ]w)dt

0

Upon rearrangement then

5 = 45 (w) = ((bo 1 1)' - c01 + L[4 2 ])wdt + f f 4 dt

0 0

which is of the form discussed in §1.2 with

-4(b' )' 1 + Q and R = f € dt

0

In contrast to o ' notice that has a continuous first derivative (though,

in general, a discontinuous second derivative at t1  and t2 ). A C with

more smoothness can be constructed by iterating the above process.

14



§2.4 The accuracy of the approximations I i( ,.,5)

In §2.2 and §2.3 we derived some integral expressions for the ' "

These fitted into the general pattern discussed in §1.2. We shall now address

the important question of the accuracy of the approximations ( ) which

arise when the finite element solution w is used in place of w in these

expressions.

To be definite, suppose we have set up a finite element model of (2.1)/(2.2)

using C1 polynomial elements of degree p(>3). Write Ii ...,1N for the

intervals which comprise the finite element mesh. Denote by S the set of

all admissible finite element functions. Let h = max (length Ik) In the
k

case of the problem (2.1)/(2.2) the fundamental orthogonality property of the

finite element error w-w takes the specific form

(2.13) f(a (w-)"v" + b(w-w)'v' + c(w-w)v) dt = 0

for all v in S . Denoting by E(.) the energy expression

E(.) = J (a((-)") 2 + b((')') 2 + c (.)2) dt
0

the standard finite element error estimate may be written as

(2.14) E(w-w) < min E(w-v*)
v*06S

where the minimum is taken over all v* from S

For the purposes of the analysis, we need to introduce the auxilliary

function W which satisfies

(2.15.a) L[4] = on (0,1) and

P(0)= p'(0) - 0 - €() = p'(1) ,

or what, after integration by parts, is the same thing

15



(2.15b) f(a" u" + b 'u' + c j u)dt = u dt

0 0

for all u with boundary values as in (2.2). Now, recalling (1.3), we have the

following estimate for the error 4 -

e = "- fIwi )d1%
+ -w (w-w) dt

0

= J(a(w-w) w"+ + cw"M dt
0%

(putting u = w-w in (2.15b)

(a(w-'w")' (i-v)" + b(w- )' (-v)' + c(w-^) (-v)) dt

0

for any v from S (by(2.13)). So

14-'} < min ( (a(w-w)" (-v)" + b(w- ,)' ( -v)' + c(w-W) (-v)) dt)
yES

0

< min(E(w-w) E(i-v)

(2.16) < min(E(w-v*) ')min(E(y-v) 2 )-v*ES 'ES

using (2.14). In words then, the error in 0 is bounded by the product of the

energy norm difference between w and its best approximation from S ,

and the energy norm difference between tP and its best approximation from S

The importance of the smoothness of C can now be appreciated. Smooth functions

r will give smooth auxillary functions P , and these will be approximated

well by the functions in S

Let us now try to obtain an asymtotic rate of convergence for which

will be applicable to both the h and p-verslons of the finite element

method. First, recall the approximation result (see [3]): If z is a

16



function defined on (0,1) and if the smoothness measuring quantity

s N f , , t.)
1 z s N Eu dt)"2

£=O k=l
Ik

is finite for some integer s > 2 , then

(2.17) min E(z-v) < C1 h2m I1z,12
yES 2(s-2)

where C is a constant which does not depend on the function z , the

finite element mesh or the order of elements used; and m=min(p-l,s-2). If

the load f in (2.1) and the function 4 are smooth enough to guarantee that

j1f11sl < - and H4H s2 < - , then, provided the coefficients a, b and c

are sufficiently smooth, it may be shown that

1WH1 < C2 11f11 and

*1 1

(2.18)

*l2s +4 - c3  11 1132

where C2  and C3  do not depend on f and respectively. Having these

smoothness properties of w and ' , we may make use of the approximation

bounds (2.17) in (2.16) to obtain

I -P I< Ch 1m 2)  1W1 1
(2.9 C1  (s 1+s2+4) I1 1 +4 1 1 s+4

(2.19) 1 C h(ml+M 2) HIH IM
1 2 3  (sI+s 2+4) I 1 ' 2

where mi- min (p-l,si+2)(i-l,2) . Likewise (2.14) gives
C2 h 2ml

1 2 p 2(s1+2) l 1

17
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We mentioned in §2.2 and 2.3 that the relevant 's could be made

arbitrarily smooth (i.e. n in (2.5b) etc. was arbitrary). For large

values of n this could become laborious. Note that (2.19) allows dis-

continuities at meshpoints without any adverse effects on the accuracy of

What is important is that C be smooth in the interior of each of the

I . In the h-version of the finite element method, there would, at least

from our analysis, seom to be no reason to proceed any further than the stage

at which s2 + 2 = p-l . At this stage ID-11 = 0(hml + P-1), and this rate
2mI

would not be improved by increasing s2 Comparing this with E(w-w) = 0(h ),

we see , as was previewed in §l, that the error j€- is at least of the same

order as the energy of the error in the finite element solution. For the p-

version there would seem to be no such limit. We may increase s2  indefinitely

always improving the convergence rate for as we go. Here we have

-(sI+s2+4) -2(si+2)
O(p )and E(w-w) = 0(p 1

Of course, actual computations must be carried out working from only

a limited range of non zero h's and finite p's . In such a setting,

the asymtotic rate of convergence alone is not necessarily a good

indication of an approximation's accuracy. As (2.19) shows, the error

in 4 is related not only to p and h , but also to IWI 2

and the constants Ci . As s2  increases, the numerical values of these

quantities may also increase dramatically with the net effect that there is a

loss of accuracy in 0 . In practice, it is usually more important to ensure

that the numerical value of IId1l is reasonable, than to construct 4's
s2

with high orders of continuity. Recall also our comment earlier that blending

function techniques are generally superior to cut-off function methods in this

respect. Another important practical consideration is the choice of a finite

18



element mesh. As (2.16) shows the accuracy of is related to the approxima-

bility of both w and v) . So, an optimal mesh for calculating ' would be

one which was, in some way, simultaneously good for both the original problem

(2.1)/(2.2) and the auxiliary problem (2.15a). We shall explore this question

in the third of this series of papers. The sorts of concerns touched upon in

this paragraph are of great importance in two dimensional problems. For many

such problems there is no complete analogue to 2.18), and we are denied the

luxury of being able to make J as smooth as we wish.
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§3 Two Dimensional Problems

§3.1 Formulation of the problem

To illustrate the ideas of §1.2 in a two-dimensional setting, we shall

consider in some detail the simple model example of

(3.1) V w - kw - f in 0 , a polygonal region,

with the boundary condition

(3.2) w=0 on a 1 , the boundary of 12

Here we suppose that k > 0 and assume, for simplicity, that k is a

constant and f a smooth function. The problem (3.1)/(3.2) could, for

example, be thought of as describing a polygonal membrane on an elastic support,

that is fixed along its edges. We shall be concerned with evaluating the

following quantities which are related to w

(i) The displacement t= M = w(x) at a point x = (xlX 2 ) in Q2

(ii) The stress ¢Y2 = ¢2 (w) = Vw-fl(y) at a point y = (ylY 2 ) on M , which

is "far" from a corner point. (The case of y "close" to a corner

point will be discussed in our second paper.)

§3.2 An integral for l

Let 4(x) be an arbitrary function defined and sufficiently smooth on

P1 - (x} , which vanishes on 3Q . For c > 0, small enough, denote by S

a disc with centre x and radius c which lies in Q2 . Multiply (3.1) by

and integrate over 12-S . Using Green's Theorem, we obtain

(3.3) f € dA = (Vw'fi$ - V.fi w) ds + L'flw dA
P-S as fsc 12-S

c

where L[-] = V2 (.) - k(.) and 6 denotes the unit normal on as

pointing towards x • Now, impose the extra conditions

20
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(x) = (2Vr) log r(x) + 0(1)

(3.4) 1 1 (as x -* x)
re(x) = V((2T) -log r(x))+ o(r(x) - )

where r(x) ((xI-x 1 )2 + (x 2 -x 2 )2) Then, in the limit as E -* 0 , (3.3)

yields

(3.5) l(w) = w(x) - L]w dA+ f f dA

Note that the integrals appearing on the right hand side of (3.5) are possibly

improper. We see that (3.5) is precisely in the form required by (1.1) with

=-L[fI and R = f dA . Notice also that were 0 the influence

function (Green's function) for (3.1)/(3.2), then the first integral on the

right hand side of (3.5) vanishes. In general, of course, the influence

function is not available.

Just as in §2, it will turn out that from a numerical viewpoint, it is

important for c to be a smooth function. The problem of selecting a suitable

or what is the same thing, of choosing € appropriately can be thought of

as having two aspects. Firstly, ensuring that L[O) is smooth in the immediate

neighborhood of x ; and secondly, of imposing the boundary conditions on

in such a way that no unsmooth behavior of 4 is introduced.

Let us talk in more detail about these points as they relate to our model

problem. It is easy to verify that if

(3.6) (x) = (2-n)-(1 + )2 log r(x)

-2-

then I[f]=3(r log r) in the vicinity of x. Now has the

required asymtotic behaviour (3.4), however, it does not vanish on Q , and

so cannot be used directly for in (3.5). Let us suppose for a moment that

x is not too close to 3fQ . Then, as for the one-dimensional case, there are

21
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.t nu:':bt.r of tuchnitques for modifying € . We could, for instance, proceed in

one of the following ways:

(i) Let X( x) be a smooth "Cut off" function which vanishes on Q

but is a constant , tqual to 1, in a ntighborhood of x . Then (x) = X(x) (>)

sati.sf iCs all our requirements.

(ii) Let Co(x) be a smooth "blending" function on 2 wh)ich agrees with

00
;Wx on 3E. We could then take 1,(x) = (x)-4 (x)

(iii) Use a combination of the ibove two techn iques--"cut off" functions

to handle part of the boundary, "blending" functions for the remainder.

In the case that x is very close to 92 , technique (i) is not the proper method

to use, as the "cut off" function X would then have large derivatives

in the region between x and 3Q . Methods (ii)/(iii) provide better ways of

handling this case. Note however, that though L[I is smooth near x,

is not. For an arbitrary "blending" function 0 , agreeing with on 9q

near x ,there is no reason to expect that LLO ] be smooth. One way around0

this, at least in the case when x , though close to the boundary of Q , is

far from a corner point of the boundary, is tr formally extend across the

straight line segment of the boundary closest x . Now let be the reflection

of this extension back into Q . Then L P is smooth, and ip agrees with

on the straight line segment of the boundary closest x . Standard "blending"

techniques may then be used to deal with the remaining three sides of 2.

There are obvious extensions of the above ideas to domains with curved boundaries.

§3.3 An integral for P2

For definiteness, suppose that y lies on the straight line segment ((i,-i),

(1,1)) which forms part of 302 . This time, let be an arbitrary, sufficiently

smooth function defined on P , which vanishes on a1-(x) . For C > 0 , small

enough, denote by S+ (x) a half disc with centre x and radius c , which lies
C

in S1 . Multiply (3.1) by € and integrate over P-S + . Using Green's Theorem
C

22
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we obtain

(3.7) ff dA = (Vw-fh . 2 f")ds + J L[1 ] w dA

C C k:
+t'ere C d],notes the circular portion of the boundary of S+C , and as usual

fi denotes a unit normal pointing towards the centre of S (see Fig. 1). 'Now
C

if we impose the extra conditions

lCos M-_-x) +o(r(x) - 1 ) t
(3.8) '(x) = r co - + (a-l

__ ~xi ~ x (as x -~ y

__ - ) -"

(3.9) ¢2(w) = x y ) =1.10 w dA- f dA
1 J

This is in the form of (1.1) with = L[¢] and R = f dA In general

the integrals on the right hand side of (3.9) will be improper.

Figure 1; The region S .
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As usual we~ slould choose 4 such that C is smooth. This problem can

he approachied in an analagous fashion to that outlined in §3.2. In our case

it c:an be verified that if

(3-10) (X 0 - r(x) ) log r(x))

tfien L1 4J is smooth about x (in fact, L~l=0 (r(x) log r(x))

Now q has the necessary asymtotic and boundary behavior near y , but it does

not vanish everywhere on 32. To construct suitable 's based on we may

use obvious adaptations of the "cut off" or "blending" techniques out]ined in

§3.2.
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§3.4 More general problems than (3.1)/(3.2)

The methods of §3.2 and §3.3 may be applied to problems more general

than (3.1)/(3.2) (..g. problv'ms in el ast icity, problems with non- Cll:t alit

coefficients or non-homogeneous boundary conditions). We shall not go

into details here. Let us however, just mention that for the problem

(3.1) with the essential boundary condition (3.2) replaced by the natural

boundary condition Vw • fi - 0 , there would have been no need in §3.2 to

impose any boundary condition on 4 . The expression (3.5) in this case

would have to include an additional term, namely, a line integral around

MI .

§3.5 The accuracy of the approximations 1 2

Suppose that we set up a finite element model of the problem (3.1)/(3.2).

In the usual way let us partition P into elements El, E2 ,.. ,En say (we

do not need to be specific about the shapes of the elements), and assume that

on each element we represent w by a polynomial of degree p . The demand

of conformity requires that these polynomials be continuous across the inter-

element boundaries, and vanish on M1 . Denote by S the set of all such

finite element functions. Let hJ be a characteristic linear dimension

of E. , and set h = max hj 3 j

The finite element solution w satisfies

(3.11) (Vw Vv + k v) dA - f v dA

for all v from S ; in addition, we have
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(3.12) f(V (w-w) Vv + k (w-W)v) dA =0

for all finite element functions v in S .Defining the strain energy expression

by

E(-) =fcVc.) 2 + k- d

we haveI

(3.13) E(w-w) < min E(w-v)
VyE S

In line with the general procedure outlined in 51 we consider approxima-

tin 1() n 2(w) t PIand 2 In either case, we make

an error of the form

(3.14) e =J (w-'W) dA

Now, just as for the one-dimensional case, introduce an auxiliary function

p(x) which satisfies

- k = -C

or equivalently, 1= nl

I(V Vu + k ?pu)dA = ;u dA

for all functions u which vanish on 3Q and for which E(u) is finite.

We may certainly choose u = w-w to obtain from (3.14)

e- J~iV(w-W)k (w-) dA
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and using (3.12) we see that for any finite element function v from S

= I (V (G-v) V (w- ) + k (i-v) (w- ))dA I

<(.-v) E (w-w)

So on choosing v to minimize E (G-v) , and recalling (3.13),we have

(3.15) min E(G-v) main E(w-v )
v CS v* ES

This estimate is telling us, exactly as did (2.16) in the one-dimensional case,

that the accuracy of ' depends on how well both the solution w of the

original problem, and the solution i of the auxiliary problem, can be

approximated in the energy norm by the finite element functions in S

if we try to obtain rates of convergence for , we come up.against some

important differences between the one and two dimensional cases. In general,

the analog of (2.18) holds only if the boundary of S2 is smooth. If ap is

not smooth then (2.18) must be modified to account for some special singular

terms that arise because of corners of aQ (see [ 4 ]). These singular terms

govern the smoothness and approximability of w and ip . The analog of estimate

(2.17) is also more complicated in the two dimensional case (see 1 3]). None-

* theless, if the mesh has the proper level of refinement around the corners of

D G then similar results to those in the one-dimensional case can be

achieved if the rate of convergence is now measured with respect to the

number of degrees-of-freedom rather than p and h . To go into further

details is beyond the scope of this paper.
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§4 A Numerical Example

§4.1 Formulation of the example

As a practical demonstration of the methods discussed in §3, we shall

consider some numerical results for the problem modelling a square, uniformly

loaded membrane which is fixed along its edges. More specifically, we deal

with the problem governed by the differential equation

(4.1) V w = -l on Q = (-1,1)2

and boundary conditions

(4.2) w = 0 on the boundary 3Q of Q

We shall employ the theory of §3 for the calculation of approximate

values for:

(I) The displacement at the centre of the membrane: 0l =P1 (w) = w(0)

(II) The stress at the point P(1,0): P2 = P2 (w) - T1 (P )

By the method of separation of variables, an infinite series representation of

w can be found. Using this series the following exact values (accurate to

5 significant figures) can be calculated:

E(w) = IVw,2dA = .56231

ID(w) = w(O) = -.29469

2 (w) (P) = .67528

Let us also note that the solution w is relatively smooth (in fact, it has

square integrable second derivatives, though not square integrable third

derivatives).

§4.2 The finite element approximation

We shall consider a simple finite element model of (4.1)/(4.2). Namely,

bilinear elements on a square uniform mesh. By the symmetry of the problem,

we need only actually calculate using the quarter-segment OQRP of SI (see
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0(0,0)H 1- ) R (1,I)

,I,...... P (I ,0)

H -i , -I) 
1 (1 - 1) 1

Figure 2; The region of the model problem.

Figure 2). For this problem we expect the following rates of convergence:

2 \
O(h ) for the energy E(W)

O(h) for the energy norm

O(h ) for the displacement W(O)

0(h) for the stress a- (P)

where, as usual, h denotes the length of the side of an element.

Using a uniform mesh and elements of degree 2 or higher we would obtain

3
O(h 3 ) for the energy

O(h 2 5- c) for the displacement w(0)

and O(h 1 . 5 - ) for the stress a-(P)

where e > 0 is an arbitrary small number. For the h-p-version, it is

possible by suitable refinement about the corner points to obtain

arbitrarily large orders of convergence with respect to the number of

degrees-of-freedom (see (3]).
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§4.3 Calculation of w

In accord with the theory developed in 93.2, we use the formula

(2'~d'dM V 4' w fAd
where 4'takes the generic form

4'=X(Xlx 2  lo1 ( 2 + x2 2) - x~2 lor ( 1  2o 2

We consider two choices for 4

Case (a): X(x1 ,x 2) X(x 1)Mx 2  where

X(t) = o~!I~
Li-8(Itj- })3 '< Ii <~

(see Figure 3 and

Figure 3: Cutoff function used in the evaluation of 4, case (a).
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Case (b): X(x 1 ,x 2 ) = 1 , and

2

€o(X1,X2 ) og

In Case (a) we have employed a cut off function technique to enforce the

boundary conditions on * , while in Case (b) a blei..l'ng function method has

been used. The first integral in the for .i,,ing formula for may be

calculated by numerical quadrature. (Wt used Gaussian quadratuie.) The

second integrand is singular at 0 . This integral may be evaluated

analytically. However, it is also possible to calculate it numerically by

the following procedure: Choosing p such that V2 = 1 (e.g. p = -(x1 2 +x22

integration by parts gives

f 0 dA = f Vp-fi ds - f V *ti p ds + f V 2 p dA + p0O

All the integrals on the right hand side are nonsingular, and may be readily

evaluated by numerical means.

The results of the computations are shown in the middle section of Table 1.

For comparison, we also list the value of the finite element solution w at 0.

Notice that W(O) and both cases of l all show an 0(h2 ) rate of

convergence. This is as we would expect. Observe also the superiority of

the post-processed value in Case (b) over Case (a). This is in line with

our previous comment that blending function techniques can usually be expected

to perform better than cut off function methods. (Looking at the definition of

X in Case (a) and examining Figure 3 si. ,s that indeed X changes quite

rapidly in the region jx 2 J > In terms of the we presented in

§3.5, we should therefore not expect the corresponding to bc as well

approximated from within our finite eleme'nt buhsp-ce as it would be in Case (b)--
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No. of elements in quarter

segment (uniform mesh). 4 16 64 Exact
Va1u?

Encrgy nI-rM Lrror in w

S_((-) 30.1% 15.2% 7.62%

w(0) (*). 310714 .29E393 .295596

(relative % error) (5.4%) (1.3%) (.31%)

(a) .268783 .287205 .292751 .291-69

M(w) (8.8%) (2.5%) (.65%)

(relative % error)
(b) .287306 .292829 .294220

(2.5%) (.63%) (.16%)

H(P- .482142 .565480 .616687

(relative % error) (29%) (16%) (8.7%)

(a) .64758 .67197 .67463

(4.1%) (.49%) (.096%)

.67528

2 (b) .66623 .67313 .67477

(relative % error) (1.3%) (.32%) (.076%)

(c) .66482 .67276 .67468

(1.5%) (.37%) (.089%)

TABLE 1. Table of the results of the numerical calculations.
((*): negative signs have been supressed in this table)
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SOC (3.15)).

The fact that th , accuracies of w (0) and 1 (W) are comparable in this

(Xahiple is a cov, cq SII!IIce 0f our I: in b i inea.jr vI ejm-nt s. Nont-theless, Table 1

.,huws that in C.Ast (b), the va iuc.s are twice as ac(urate as the w(O)

valuts for the samt, number of clcmcnts. Putting this another way, for the

same ;ccuracy th., "dirtct" displactIncnt iethod would requLi-e twice as many

e! r.I'ts :I!, the pet--ru,,siu . i;/,ch of Case (b).

,4.3 Calculation of M ()L

In the case of our model problem the theory of §3.1 leads to

IV r 2, + ,
() V 2 w dA + dA

where tnkes the ceneric form

1 X2) ( 1 - 2 - ( 1 ' 2

We shall treat three cases:

Case (a): 1< x <1

X(XlX 2  = - + 330 <_ x <

0 -l<x < 0

(See Figure 4(i))

xl-1
o°(xlx 2 ) (x 2 + 1

1 0 <_x I <1

Case (b): X(xlx 2) Ix1 3  -1 <x 1 < 0

(See Figure 4(ii))

x - 1

O (x 1-l)2 + 1
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c x I x -2(') , -: >( x 2 ) (x
0 -11 ) - -i J .. . . 1

( I- + 1,/, /"

0I I -I 0
(i) (ii)

Figure 4: Cut off functions used in the evaluation of 2
(i) case (a)
(ii) case (b)

Cases (a) and (b) correspond to our using a blending function technique to

satisfy the boundary condition on the edges x2  ±1 , and a cut off function

method to handle the edge x 1 = -1 . In Case (c), a blending function m-thiod

is used to handle the entire boundary. Concerning the actual evaluation of

2(w) , the same comments made in §4.2 about ¢1(w) apply here also.

The results of the calculations are shown in the lower part of Table 1,

where, for comparison, we have also listed the corresponding values of

3 w"(P) . In contrast to the situation for the displacements, we see that'x I

the post-processed values for ¢2 are markedly more accurate than the "direct"

value )-() We see, as theory predicts, an O(h) rate of convergence for

the "direct" value, but an O(h 2 ) rate for 2
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